Given a binary
sequence, the following algorithm counts how many voltage increases there are
in a certain period of time.
Note: let 1 be a tiny
voltage increase and 0 a constant voltage. Somehow (at present I don’t know how
to do it), real data ought to be correctly processed so as to get a real
analysis of what is happening in the quantum scale; in order not to complicate
this algorithm, let’s suppose a random database created in Excel, for instance.
----------------------------------------------------------------------------------------------------------
#include <iostream>
#include <math.h>
using namespace std;
void main (void)
{
int i,j,var1,var2cont1,cont2,nrows,ncolumns,totaldata,percent1,percent2;
int
matrix[1000][1000];
cout<<”(Please
copy and paste the binary sequence considered in a certain period of time and type it as a matrix)”<<endl;
cout<<”Type the number of rows
:”<<endl;
cin>>nrows;
cout<<”Type the number of columns
:”<<endl;
cin>>ncolumns;
for (i=0;i<nrows;i++)
{
for (j=0;j<ncolumns;j++)
{
cout<<”Type
element [i+1][j+1]: “<<endl;
cin>>matrix[i][j];
}
}
cout<<”Input matrix: “<<endl;
for (i=0;i<nrows;i++)
{
for (j=0;j<ncolumns;j++)
{
cout<<matrix[i][j]<<”
“;
}
cout<<endl;
}
var1=0;
var2=0;
for (i=0;i<nrows;i++)
{
for
(j=0;j<ncolumns;j++)
{
if
(matrix[i][j]==1)
{
var1++;
}
else
{
var2++;
}
} cont1=var1;
cont2=var2;
cont2=var2;
}
totaldata=nrows*ncolumns;
int
a=cont1/totaldata;
percent1=a*100;
int
b=cont2/totaldata;
percent2=b*100;
cout<<”Conclusion:
“<<percent1<< ” % of times seems to have been a voltage increase, whereas
“ << percent2 << ”
% of times it’s very likely to
have been a constant voltage.” <<endl;
system (“pause”);
}